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SURFACE IN COMPRESSIBLE FLOW

By Mmris Morduchow

suMMARY

A theoretical analysis of laminar separation in compressibleflow
over a transpiration-cooledsurface maintained at a uniform wall temper-
ature is made. A simple method of calculating the separation po~t over
such a surface for a given adverse pressure gradient, Mach number, wall
temperature, and uniform coolant temperature is developed. This method
is expected to be sufficiently accurate for most practical purposes. To
show the effects of these parameters on the separation point a numerical
exsmple is worked out in detail. The normal mass flow is found to have
a predominating effect on the location of the separation point, since
over a transpiration-cooledwall separation is found to occur upstream
of the separation point over a heat-insulated wall without normal mss
flow at the same adverse pressure gradient and Mach nuder. The method
of analysis is based on an application of the K&& momentum integral
equation in conjunctionwith seventh-degreevelocity and stagnation-
enthalpy profiles.

INTRODUCTION

The cooling of aerodynamically heated surfaces has recently gained
considerable attention in connection with rocket walls, turbine blades,
and high-speed flow over a wing. A promising means of cooling such a
surface appears to be that of transpiration or sweat cooling, a method
by which the surface is made porous and a comparatiyel.ysmall.quantity,
per unit time, of cool fluid is injected normally through the pores .

into the main stream (ref. 1).

The question of separation may be of particular interest in con-
nection with flow over a transpiration-cooledsurface since a normal
mass flow strongly tends to promote separation by moving the separation
point upstream. On the other hand, cooHng of the wall tends, by itself,
ta delay separation by moving the separation point downstream.

The purpose of this study is to determine theoretically the actual
net effect of simultaneous normal mass flow and cooling of the wall on
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2 NACA TN 3559

conditions of separation over a sweat-cooled surface. Separation, as is
well known, is a condition to be avoided, especially in order to prevent
high drag.

The present analysis is based on a study of laminar flow in the
boundary layer. It is true that in many actual cases of sweat cooling,
such as the cooling of turbine blades, the flow is perhaps more likely
to be turbulent than laminar. However, the present state of basic theo-
retical knowledge on turbulent flow, especially turbulent separation,
does not appear adequate to serve in developing a satisfactoryana3ysis
of separation over a sweat-cooledwall. For lsminar flow, on the other
hand, the existing basic theoretical knowledge is, in a sense, complete
(if the Navier-Stokes equations, together with Prandtl’s boundary-layer
simplifications,are accepted), and it will be seen that it is possible,
on this basis, to develop a fairly simple and yet sufficientlyaccurate
means of analyzing I.aminarseparation over a sweat-cooledwall. Since
separation tends to occur more readily in a laminar than in a turbulent
boundary layer, the present study is of interest in itself. M3reover,
it My tentatively serve as a possible qualiktive guide to the corre-
sponding effects of parameters such as the mass-flow injection-ratioor
coolant-temperatureparameter, the wall-temperature ratio, and the ~ch
number on separation in turbulent flow.

Although laminar separation over an hpermeable wald.has received
considerable attention in the literature (refs. 2 to 6), the only &nal-
ysis of separation over a transpiration-cooledwall appears to be that
in reference 7, where an application of the K&m&-Pohlhausen methcii,
based on fourth-degree veloci~ profiles, was made. Because of the
appreciable quantitative inaccuracies inherent in the use of fourth-
degree profiles for determining the separation point, however, the anal-
ysis of separation in reference 7 must be regarded as only qualitative.
The present analysis, which may be considered as a refinement of that
in reference 7, is also based on the K&man‘ momentum integral equation
but in conjunctionwith seventh-degreevelocity profiles, as in refer-
ences 2 and 6. DJ luxing seventh- instead of fourth-degree veloci~ pro-
files, it is possible to satisfy additional boundary conditions (espe-
cially at the wall) which an exact solution would necessarily satisfy.
As shown in references 2 and 6, excellent agreement, even at high Mach

. numbers, with the zero-heat-transferresults of reference 8 has thereby
been obtained.

Although the present analysis can be readily used as a basis for
investigating other properties of the laminar boundary layer over a
transpiration-cooledwall, the emphasis here is on only one aspect,
separation. A simple method of calculating other properties (such as
heat transfer and skin friction) of the laminar boundary layer in flow
over a sweat-cooled surface maintained at a uniform wall temperature
is given in reference 9. A methcd of calculating the required normal-
mass-flow injection distribution is aho given in reference 9. Like
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reference 7, however,
velocity profiles and

reference 9 is based on the use of fourth-degree
cannot therefore lead to quantitativelyaccurate—

results for the location of the separation point in an adverse pressure
gradient.

In the present investigation, the wall is assumed to be ndntained
a% a uniform temperature by the appropriate distribution of normal mass
flow of the coolant fluid. The coolant is assumed to be the same fluid
as that of the main stream (namely, air), while the coolant temperature
is assumed to be uniform along the surface.

It is further assumed, for mathematical sin@licity, that the
Prandtl number is unity and that the coefficient of viscosity is pro-
portional to the absolute temperature. It maybe worthwhile, in this
connection, to note that in reference 3, based on an analysis of flow
over an impermeable wall with no heat transfer, it has been concluded
that such assumptions should not lead to serious errors in the location
of the separation point under ordinary conditions for air.

The analysis is first carried out in general terms, and a method
for calculating the location of the separation point in a given adverse
pressure gradient with a given free-stream Mach number, wall-temperature
ratio, and coolant-temperatureratio is given. Since the normal-mass-
flow injection distribution of the coolant, in general, must be nonuni-
form if the wall temperature and coolant temperature are to be uniform,
it will be seen that the parameter containing the coolant temperature
is a more appropriate parsmeter than one proportional to the magnitude
of the coolant mass flow. The method presented here is a direct exten-
sion of that for an impermeable wall contained in reference 6 and,
hence, possesses the same advantages of simplicity and accuracyl as the
latter. Numerical examples are then worked out in detail for the case
of a linearly decreasing velocity outside of the boundary layer, and
the effect of Mach number, wall-temperature ratio, and coolant-temperature
parameter (or, equivalently,magnitude of the normal mass flow of the
coolant) on the separation point are thereby ex@.citly shown.

This work, carried out at the Polytechnic Institute of Brooklyn
Aeronautical Laboratories,was sponsored by and conducted with the finan-
cial assistance of the National Advisory Comittee for Aeronautics. The
author hereby expresses his thsmks to Mr. Richard P. Shaw and Mr. Richard
G. Grape for their aid in the numerical calculations.

lAlthough the method presented here has been.found to agree very
well with presumed accurate solutions for the special case of zero heat
transfer over an impermeable wall.in a typical adverse pressure gradient,
Vhile all of the approximations have been made on a rational basis, this
nevertheless does not constitute a rigorous proof that the methcd must
necessarily yield equally accurate results in all other general cases.
Indications,however, are that the methal may be expected to be of com-
parable accuracy in the more general cases considered here.
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A defined %y equation

ai coefficient of Ti

bl -COeffiCi6XitOf T

c~~~ (6ee, a150, eq..
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(19C)

in velocity profile (i = 1, . . ., 7)

Ln stagnation-enthalpyprofile

(17) ~d (26))

specific heat at constant pressure

specific heat at constsnt volume

defined immediately following equation (10) (i =1, . . ., 5)

constant values of F1 and F2 obtained by replaclng ~

bl by a constant value (see, also, eqs. (28)

and fig. 2)

s-kgnation enthalpy,
~2

~T+m

ratio of actual wall temperature to adiabatic wall temperature,
To/Te

coefficient in linear viscosity-temperaturerelation, defined
by equation (7)

heat conductivity of fluid

characteristic length

Mach nuniber

magnitude of external velocity gradient in numerical example
(seeeq. (30))

reference Reynolds number, PJJJ /!JOl

constits defined immediately following equations (28)

Sutherland’s constant, 216° R for air

.
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T absolute temperature

Tc absolute temperature of coolant

Te equilibrium or adiabatic wall temperature

t variable defined by equation (8)

u,v velocity components in x- and y- directions, respectively

X,y distance along wall and normal to wall, respectively

ajF constants defined by equations (21)

7 ratio of specific heats of fluid, c-Jcv, 1.4 for air

b boundary-layer thichess in xy plane

8t boundary-layer thictiess in xt plane

A = (@Z)2Re

IJ coefficient of viscosity

P mass density

! s x/2

T = t/5t

a constant, FM + F2S - ~h (see, also, eqs. (28) and fig. 3)

Povo
9 normal-mass-flowparameter, n Re

1/2

Subscripts:

o values at

s values at

1 values at

co values at

l-m-m

.

wall

separation point

local outer edge of boundary layer

a reference point outside of boundary layer

A prime @notes differentiationwith respect to E.
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BASIC EQUATIONS

The partial differential equtions of the
boundsry kyer, for a Prandtl number of unity,
following forms:

The momentum equation:

compressible latninsr
can be written in the

au au %+a au()‘“x+w~=plu%- ~v~
The energy equation:

()z+pvx=avm “
‘uax ay ay ay

The continuity equation:

a( ~u) a(pv)_ o
.—

ax + ay

The quanti~ H is the sgtion enthalpy, defined

Since the pressure is
thiclmess, it follows

assumed as constant across the
from the ideal-gas law that

Tl
JL=—

‘1 T

The coefficient of viscosity p will
the absolute temperature, in the form (cf.

v T—=
l% ‘c

as

boundary-layer

(1)‘

(2)

(3)

(4) .

(5)

be assumed proportional to
refs. 10 and 11)2

(6)

where K is chosen so as to satisfy exactly Sutherland’s’viscosity
relation at the wall. If To is the wall temperature, assumed in this

2~e s~bol K i~tead of the more fa~~ s~bol C iSused
here in order to avoid any confusion with the coolant-temperatureparam-
eter C of reference 9.



NACA TN 3559

analysis to be
by

vhere S is a

7

constant along the wall, then K is a constaut given

Tm + S To 1/2

()
K=——

To+STm

constant.

The analysis can be simplified by replacing the normal distance
coordinate y by the variable t, defined by

(7)

(8)

By integrating eqmtions (1) and (2) across the boundary-layer thiclmess
with respect to y and making use of equations (3)~ (5)I (~)~ ~d (8)Y
the following integrodifferential equations, expressed in nondimensional
form, are obtained (details are given in the appendix):

‘1

{

P~ ‘
@’+AF1- ‘1‘+Fl’+—

P1 [( )]}
Fl+ l+& M12F2 .U1

(9)

(lo)

. _____ ___ . .. ...——— ~ — ..— — —-— ——. . .— —.——. -—--——
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where

pl
>

(l)]U2

q-r
dr

.

1a(u/u~
aT -L AU

[1a(H/H~
F5 = a~

o

The quantiw h is defined here as3

h = ~/H1

NACA TN 5559

(Ii)

For a Prandtl number of 1, a well-lmown solution of ener~ eq~tion (2)
satisfying the condition of zero heat transfer at the wall is
H= Constant. It follows that under this condition the wall.temperature,
called the equilibrium or adiabatic wall temperature and denoted by Tej

3~e quantity h here is essentia~ the same as that in refer-
ences 7 and 9 and as G1 in references 6 and Il.

.- ——.—.
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will. be

Te =
( )

T11+&M12

(since H= Constant also along the flow at the outer edge of the

(12)

boundary layer). From equation; (4), (11), and (if?)it f~llows that

h = To/Te (13)

Thus, at low speeds (~ = O), h denotes the ratio of the actual wall

temperature to’the main-stream temperature, but at high speeds the
appropriate parameter h is the ratio of the actual wall temperature
to the adiabatic walJ temperature.

In deriving equations (9) and (10) the conditions u = O and

Pv= povo at the wall (y = t = O) and the conditions of smooth tran-

sition of the velocity and temperature profiles to their local main-
stream values at the outer edge of the boundary layer (t = bt) have

been used. It should be noted, moreover, that, as in reference 11, a
single boundary-layer thickness for both the velocity and the stagnation-
enthalpy profiles is assumed here. Equations (9) and (10) are, in fact,
a direct extension of equations (lJ_)and (12) of reference 11 to the
case of normal mass flow (povo # O) at the wall. With K= 1, equa-

tions (9) and (10) are also equivalent to equations (8) and (9) of
reference 9 if the thermal boundary-layer thickness is assumed to be
the same as the dynamical boundary-layer thickness in the latter
equations.

A relation between the injected normal mass flow of the coding
fluid and the desired wall and coolant temperatures can be obtained~
a heat-balance equation stating that the heat transferred by the hot
&s to the wall is absorbed by the coolant. This equation can be
written as

H~~
by o

= PoVo~(To - Tc) (14)

Both To and Tc are assumed here as constant along the wall. Equa-”

tion (14) implies the following nondimensional relation:

(15)

..— .—. ——_. .—. -—— _.. —_ __ .,_ ___ ._._. _ .__-. . .. —.—-.——
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where

.

[1b(H/H~
111= ~T

● o

The flow at the outer edge of the boundary layer, denoted by sub-
script 1, is assumed as lmown and as determined by the shape of the
surface in the flow. h accordance with the isentropic-flowrelations,
the flow outside of the boundary layer
relations

T1

()
—=1+ 7
%

+ MC?J2

1

PI./Pm= (T1/%)=

is assumed to satisfy the

(16)

M12 = &2(U@W) 2(TI&) ‘1
J

Thus, it is necessary only to prescribe the velocity distribution
u~~(~) and the reference Mach number ~ outside of the boundary

layer.

METHOD OF D~ swmM’IoNPom

For the purpose of determining the separation point in an adverse
pressure gradient, the velocity and stagnation-enthalpyprofiles will.
be assumed, as in reference 6, as seventh-degreepolynomials. The coef-
ficients are chosen to satisfy the following boundary conditions:
.

A%. T = 0:

u= o, pv= Povo(x), T = To (or H/Hl = h) (17a)

—.————
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a3b/ul)= ~c a20+1) Tm To p~u~’ ~a(H/Hl)
h .—— —— . (17C)

hT3 aT2 TITIP. %K aT

akwl) s ~

aT4 1y#!LL+&L@
aT2

(17d)

a(H/Hl) = h2(H/Hti

c aT
(17e)

hT2

a2(H/Hfi = a3(H/H~

c a? aT3
(17f)

At T=l:

U/ul = 1, H/Hl = 1

a(u/ul)= a26du1).= a3(@q) = ~
aT aT2 a~3

(17g)

(17h)

a3(@@ = ~
a2(H/Hl) = a73

w
=T (17i)

aT2 .

Equations (17’b)and (17e) follow from partial differential equations (1)
and (2) at the wall, while equations (17c) and (17f) can be obtained by

——. .. . . . . . - .——- —...—.. . .. ——— .——.— .- _ ——— -.— ——.. . . —
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.

differentiating equations (1) and (2) with respect to t and taking
values at the wall. Equations (17a) to (17c) and (17e) to (17i) are
essentially extensions of boundary conditions (22) to (28) of refer-
ence 11 to the case of normal mass flow at the wall (i.e., C+o).

Equation (17d) is an additional condition introduced for the
specific purpose of obtaining greater accuracy in calculating the Ioca-
tion of the separation po~t in an adverse pressure gradient. This is
a condition at the wall which an exact solution would necessarily satisfy
at the separation point (though not necessarily elsewhere). It was
originally applied in reference 12 for calculation of the separation
point of incompressible flow over an impermeable wall and was subse-
quently applied in references 2 and 6 to compressible flow over an
impermeable wall.without and with heat transfer. In all of those cases
the condition ~a4(U/Ufl~4]o.0 wasused an. wasobtained. bydiffer-

entiating equation (1) twice with respect to t (or y in incompres-
sible flow) and then taking values at the wall at the point of separa-
tion, that is, where (&@t) o = & The present condition, namely, equa-
tion (17d), is an extension of that condition for the case of a normal .

mass flow (c # O) and can be obtained in a manner essentially similar
to that shown in detqil, for an impermeabk wall, in reference 6.

The seventh-degree sta~tion-enthalpy and velocity profiles
satisfying boundary conditions (17a) to (17i) can be written in the
following dimensionless forms:

H—=h+(l-
H1

h)(3574 . WT5 + 7m6 - 20T7) +

Eb~T- 20T4+ 4575 -
)

36T6 +10T7 -1-

( 2CT -
2

10T4+ 2M5 - 15T6+ 4T7j +

(4c2T3-
1

4T4 + 6T5 - 4T6 + T7)
6

(18)

u~ = g alTi
i=l

(lga)
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where

*2 _ (7/?) c
- ‘(’ -s)—

~2

(

.2bl
4+c+fi16+c+Y

)

()ca2 2b1
a4==T+c

5 blA
—-

a7=-~+6h %

1

13

.

(19b)

(19C)

— — ————- .—— - —- ——~
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By.substituting expressions (18) and (19a) to (19c) for the
stagnation-enthalpyand velocity profiles into eqwtions (9) and (10),
the latter become ordinsry differential equations for A(E) and bl(~).

Proceeding in a manner analogous to that in references 9 and 11, one
can obtain a general approximate solution of equation (9) by making the
simplifying approximation that in.the expressions for F1 and F2 (and

only there) the a2(~) terms mRy be replaced by constant values for the

entire flow. Moreover, bl(~) is assumed to be replaceable by a con-

stant value in equation (9). Hence, in accordmce with equation (15),
c will be a constamt, since h and Tc (and hence Tc/Te) are assumed

here as tiorm along the wall. By making use of equation (19a) in con-
junction with the expression for al in equations (19b) and (19c), equa-

tion (9) can thus be written as the following linear first-order differ-
ential equation for A(~):

K%% T1(c+u)—— —
l-nP1 Tm

(20)

where Fk and F2s are the constants obtained by giving a2 and bl

constant values in F1 and F2, respectively, while O is a constant

defined by

a = ‘1s ‘F2s-@

bkreover, u and B are constants defined by the relation al = a + i3A.

Thus

3

a= 7

(
4+c+~16+c+~)

120

‘+;O [ 1— (16 + c)h+ 2bl + $- bl

m=

(
4+c+&16+e+~)

J

(21)

—
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By the use of relations (16), the following solution
with the condition A = O at ~ = O, is obtained:

15

of equation (20),

for the dimensionless squaredIt may be noted that this expression
boundary-hyer thickness 3(~) in the xt plane is of a form qti-tesimi-
lar to that (cf. refs. u and 6) for zero no- mass flow (c = O). b
fact, as has been seen, the introduction of a sma114 normal mass flow
of cooling air at the wall does not introduce any additional difficulties
into the present mathematical analysis, and no simpM&ing approximations
in addition to those made in references 11 and 6 for an impermeablewall
need be made here. This is due essentially to the fact that the mass-
flow parameter cp appears only in the form defined by c and that
according to heat-balance equation (15) with
temperatures c can be approximated well by

Separation of the flow will occur where

where al = O.

that the value
will be:

According to equations (19b)

of A (to be denoted as &)

uniform wall and coolant
a constant.

(au~y) O = O and, hence,

and (19c), this implies

required for separation

The value (assumed constant) of bl now remains to be determined

and, thence, the value of the coolant parameter c. The value of bl
can be obtained in a manner analogous to that developed in reference Il.
for s.nimpermeable wall.. However, for flows which, at the leading edge,
behave like those in a zero pressure gradient, that is, flows for which
U1 is finite while h = O at ~ . 0, a good approximation for bl

can be obtained by calculating the value corresponding to the flow over
a fkt pkte (cf. ref. 6).

4That is, sufficiently small that the boundsry-layer approxhnations
of Prandtl remain valid.

... _. .._ . ...— ____ _. _.. -. -._. _ _ _ . . . .— —.. —.—. .—. .— —.— .
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To determine the value of bl for flow over a flat plate (UIt = O)
it is first noted that for this case, with the wall temperature uniform,

,

equations (1) and (2) imply a linear relation between the stagnation-
enthalpy and the velocity profiles:

H

(1)
—=h+(l-h)~
HI u

Equation (24) is valid regardless of whether or not a normal mass
exists at the wall. If it is assumed (as, e.g., in ref. I.1)that
veloci~ profiles in the boundary layer over a flat plqte can, in

(24)

flow
the
gen-

eral, be well represent&i by s~h-degree polynpnials,~ then it follows
from equation (24) that the stagnation-enthalpyprofiles must in this
case also Ye sixth-degree polynomials. Consequently, an accurate value
of bl for the flow over a flat plate can be obtained simply by setting

thq coefficient of T7 inequation (18) equal to zero. This yields

bl =

b analogy to the procedure in

120(1 - h)

60+wc+c2
(25)

reference 6, this ‘isthe value of b,

which will be assumed herein for the purpose of calculating the separa-
tion point. Substitution into equation (15) for bl according to equa-
tion (25) yields

1 -h
C(6O + UC + c2) = 120

h - (Tc/Te)
(26)

Thus, for a given (positive)value of the parameter (1 - h)/[h - (Tc/Te~ ,

the value of c can be directly determined by calculating the real posi-
tive root of cubic equation (26). Although the basic coolant-temperature
parameter is (1 - h)~h - (Tc/Te~ , it is seen that it is more conv~n-

ient to treat c as the coolant-temperatureparameter. The parameter c
as a function of (1 - h)~ - (Tc/Te~ iS sho~~ in fi.gure1.

The values of the constants FM and F2S and, hence, O can be

obtained by inserting expressions (18) and (1>) to (19c) for the
stagnation-enthalpyand veloci~ profiles into the integral expressions

5~ese pkofiles would be chosen to satisfy all of boundary @XlditiOnS
.,

(17a) to (17i) withthe exception of condition (17d).

— ..—
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for Fl and F2 given immediately following equations (9) and (10).

AE in references 2 and 6, the constant value of a2 (to be denoted

by ~~) will be chosen
point. Setting al = O

in addition to equation

a2~ =

here as the value of a2(~) at the separation

and using equations (19b) for al and a2,

(19c), it iS found that

7/5

bl

( )

2bl1+2 , C~6+c+
15h 120 h

(27)

The explicit expressions for the constants Fh and O are thus found

to be

Fb . -0.273310 + 0.37058~s - 0.07kf%7a2s2+ 0.002863~Sr -

)

o.oo1183a2s?c - 0.0C00~727a2~?r2 - 0.023592(s - 2a2sc) + I
0.009678a2~(s - *se) + O.00007701a2r(s - 2~~c) -

0.0303141(s - 2a2~c)2

( ) — (92s - ~sr) - Ph
a2s % + % c + 6,~20

where

r s ~ (2bl + ch)\

I

I(28)

J

.— . . —— . . .-_—_. . _. .,—.-. -... ..— -— —-— — .. , - ——
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and bl, ~~, and B are given respectively by equtions (25), (27),

and (21). !IIUISFm and @ =e functions only of the temperature

ratio h and the coolant prsmeter c. These functions are shown in
figures 2 and 3, which may be used to facilitate actual calctitions.6

b order to determine the separation point over a sweat-cooledwall
in a given adverse pressure gradient (UI1 < O) with a given reference

Mmh number ~, given uniform wall-temperature ratio h, and given uni-

form coolant-temperatureratio To/Te2 it is necessary only to calculate

A(g) in accortice with equation (22) and to determine the value of lj
at which h(~) = ~, where ~ is givenby equation (23). This method
includes the case of flow over an @ermeable wall (zero normal mass
flow at the wall), for which c = O and h is considered as srbitrary.
The coolant normal-mass-flowdistribution, as givenby q and impM.cit
in this analysis, can be obtained from-equation (15) after A(g) has
been determined. Thus,

T1 &d?) ‘K—
‘“ v-i

(29)

where c is determinedly eqution (26) (or fig. 1).

NUMERICAL EXAMPLE

The implications of this analysis for the effects of Mch number,
and simultaneous cooling of the wan &d normal mass flow, on lmrhar
separation over a sweat-cooledwall can best be shown by a numerical
example. For this p~ose, the case of a Wearly diminishing velocity
outside of the boundary layer will be treated in detail. Thus, itwill
be assumed that

.

(30)

where m is a positive constant. For the case represented by equa-
tion (30), the separation point will-be calculated as a function of the
coolant-temperatureratio (and thus implicit~ as a function of tie

%f Fh and @ are calculated directly from equations (28)

L

.,

,.

—.

instead of read off from figures 2 and 3, care must be taken to use a
sufficient number of si@ficant figures, since relatively small differ-
ences may occur here.
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required magnitude and distribution of the normal mass flow of the cool-
ant) for various fixed values of the wall-temperature ratio To/T=.

For & = O, that is, for low-speed (but nevertheless compressible)
flows, equations (16) imply T~’l& = 1, and equations (22) and (23) in

conjunction with equation (30) then yield the folJ.owingrelatively
simple expression for the separation point as a function of the wall-
temperature ratio h and the coolant-temperatureparameter c:

Fb

({ )

.—

m~s= l-1+ 20

~ b, +7&_6 + c)h + 2bfl}

(31)
(c+a)h+

Whre CL, bl, Fb, and O are given by equations (21), (25), (27),

and (28) (or figs. 2 and ~ instead of equations (27) and (28)).

The results represented by equation (31) are shown explicitly in
figure 4, where m~s is shown as a function of the coolant-temperature

ratio Tc/Te for variouE fixed values of the wall-temperature
ratio To/Te. Thus, figure 4 shows essentially the separation point as
a function of the implicitly required normal mass flow for various fixed
degrees of coo~ng of the wll. Along any curve here for a given value
of h, the higher the coolant-temperatureratio Tc/Te, the greater will

be the magnitude of the corresponding normal-mass-flowparameter T(~).
This is illustrated in figure 5, based on equation (29), which shows
the required normal-mass-flow distribution for two different values of
Tc/Te with h = 0.6.

The case Tc/Te = O in figure 4 represents the 13miting case in

which the required normal mass flow of the coolant is a minimum for the
given desired wall-temperature ratio h(~ To/Te); while the case T~Te = h

represents the opposite limiting case of an indefinite- large required
magnitude of coolant mass flow.

l?igure4 shows vividly the influence of a normal mass flow in pro-
moting separation. This can be seen from the fact that for a given
wall-temperature ratio h the Se@ration point moves upstream as the
coobt-temperature ratio is increased. It is further significant to
to note that all of the curves for h< 1 are below the straight Hne
corresponding to h = 1. The latter llne represents the case of an
adiabatic impermeable wall. This shows that the net effect of simultaneous
normal mass flow and cooling of the wall in flow over a transpiration-
cooled wall is, in all cases, to move the separation point upstream.

_. ..., ....— —— —.. . —-. .-. -.. — -— -—. . .-— .-. .— —.-—



Thus the umfavora%k effect of normal mass flow, as such, on separation
evidently predominates, in this example, over the favorable effect (see,
e.g., ref. 6) of cooling of the wall, as such. This predominating
influence of the normal mass flow canbe further seen in figure 4 by
noting that for a given coolant temperature the cooler it is desired to
maintain the sweat-cooledwall, the sooner laminar separation will occur.
Such is the case even if the minimum required normal mass flow of the
coolant is used (i.e., Tc = O) for each desired wall temperature.7

To show the influence of Mach number, the separation point as a
function of the wall temperature and coolant temperature was calculated
for M= 3, on the basis of equations (22) and (23). The integration
indicated in equation (22) was carried out numerically by Simpson’s
rule. The results of this calculation are shown in figure 6. These
results are seen to be quite similar to those for zero Mach number
(fig. 4) and, hence, the same conclusions regarding the effect of simul-
taneous ccollng of the wall and normal mass flow which were drawn on
the basis of low-speed flow (& = O) remain valid for higher speeds, at
least for & = 3. Separation, however, is seen to occur earlier, that
is, farther upstream, at the high Mach number, for the same pairs of
values of To/Te and Tc/Te.

CONCLUSIONS

From an analysis of separation in compressible flow over a
transpiration-cooledwall maintained at a uniform wall temperature by
an appropriate distribution of normal mass flow, the following conclu-
sions, based on a Prandtl number of unity and a linear viscosity-
temperature relation, can be drawn:

1. For flow in a given adverse pressure gradient and at a given
reference Mach number, the separation point as a function of the wall
temperature and the cooknt temperature can be calculated in a simple
manner by the approximate method developed here. The pertinent temper-
ature parameters at high speeds are hand(l- h)/~h - (Tc/Te)]t
where h = To/Tej To is the wall temperature, Tc is the coolant
temperature, and & is the adiabatic wall temperature.

————.— -

7The results in f:gure k although qua~tatively similar to those
in reference 7 differ from the latter in that the corresponding curves
in reference 7 intersected one another, while there were pairs of values
of To/Te and Tc/Te for which m~~ was downstream of that corresponding
to an adiabatic impermeable wall. This was due to the use of fourth-
degree velocity profiles in reference 7.
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2. l?Yomthe numerical example calculated, it is seen that the net
effect of simultaneous cooling of the wall and normal mass flow is to
move the separation point upstresm. Thus, the unfavorable effect of
normal mass flow, as such, on separation predominates over the favorable
effect of cooling of the wall, as such. This conclusion is valid at
supersonic speeds as well ag at low speeds.

3. l?romthe same numerical example, it is found khat for fixed
pairs of values of To/Te and Tc/Te and a fixed external flow distri-

bution the effect of a higher Wch number is to move the separation “
point upstream.

Polytechnic ~titute of Brooklyn,
&ooklyn, N. Y., December 6, 1954.

—-—_ —-—. . ._ —- —- -- . . . . ——
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APPENDIX

DERIVATION OF INTEGRAL EQUATIONS (9) AND (10)

htegrating eqw-tion (1) with respect to y over the boundary-
layetithickness 5 yields

where a prime here denotes
continuity equation (3) it

differentiation with respect to x. l?rom
follows that

a(w) a(Pu)— =-—
ay ax

(M)

and

.
Integrating the second term of equation (Al) by

(A3)

parts and making
use of equations (A2) and (A3), it is found that eqyation (Al) can be
written, with a suitable rearrangement and combination of terms, in
the form

J5~ (PU2 J’
5

oax- puul) dy + povoul + o (Puul’- Plqul’)* = -IJp() Yo

(A4)

Applying the theorem on differentiation of an integral with respect to
a parameter a, namely,

d
J

b(a)
f(y,a) dy=

J’
b(a) - dy - f(a,a.)~ + f(b,u) ~

z a(a) a(a) au
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equation (A4) becomes

l&om equation

Moreover, aupy=
equation (A5) from
T ~ t/bt (with t

(8) it fo~ows that

o =(T/TJ‘t = (91P)‘t (A6)

(&@) (dt/dy) = (T~T) (&@). Thus, transforming

the xy plane to the xt plane and introducing
= bt when y = 8), equation (A5) becomes

(A7)

where Fl

while use
tion (A7)

and F3 are defined as in the main text (following eq. (10)),

has been made of the viscosity-temperaturerektion (6). Equa-
can be written in the following nondimensional form:

(A8)

where now the prime indicates differentiationwith respect to ~,
~- X/Z, and Z is a characteristic length. Carrying out straight-
forwardly the indicated differentiation of the first term in equation (A8)
and thereby obtaining four terms, conibiningthese individual terms suit-
ably with the other terms in equation (A8), and dividing through by

(pl/pm)(%/um)2(~m/”mum’)@=ld

— —..-—. —- —



24 NACA TN 3559

AJ

(A9)

where A z (%/’)~e @ q = ~ R@.

definition of the stagnation enthalpy H

Observing that from the

(Ale)

and notimg the definition of Fl, it can be seen that the bracketed fac-

tor of ul’/ul in equation (A9) is the same as that in equation (9).
Thus, equation (A9) is identical with eq~tion (9) of the main text.

Equation (10) of the main text can be quite similarly derived from
partial differential equation (2).

-—
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Figure ~.- Required normal-mass-flow distribution of coolant to maintain
wall-temperature ratio of h = 0.6. ul/~ = 1 - mg; l& = O; S/Tin= 0.416.
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